Fuel & Advanced Combustion

Lecture 3 Combustion Equilibrium

Chemical Equilibrium

In general the combustion products consist of more than just CO₂, H₂O O₂ and N₂

For rich mixtures CO also exists in the products. At high temperatures the molecules dissociate to form H, O, OH, NO via the following reactions:

$$H_2 \rightarrow 2H$$
 $O_2 \rightarrow 2O$ $H_2 + O_2 \rightarrow 2OH$ $O_2 + N_2 \rightarrow 2NO$

The opposite direction reactions are also possible

$$2H \rightarrow H_2$$
 $2O \rightarrow O_2$ $2OH \rightarrow H_2 + O_2$ $2NO \rightarrow O_2 + N_2$

At equilibrium the rate of the forward reaction equals the rate of the backward reaction.

$$H_2 \leftrightarrow 2H \qquad O_2 \leftrightarrow 2O \qquad H_2 + O_2 \leftrightarrow 2OH \qquad O_2 + N_2 \leftrightarrow 2NO$$

Chemical Equilibrium

At equilibrium the relative proportion of the species mole fraction is fixed

For the general equilibrium reaction

$$n_A A + n_B B \leftrightarrow n_c C + n_D D$$

The equilibrium composition for species *A*, *B*, *C*, *D* is given by:

$$K(T) = \frac{Y_{C}^{n_{c}} \cdot Y_{D}^{n_{b}}}{Y_{A}^{n_{A}} \cdot Y_{B}^{n_{b}}} \left(\frac{P}{P_{ref}}\right)^{n_{c} + n_{b} - n_{A} - n_{B}}$$

where *K* is the equilibrium constant which is tabulated as a function of temperature for different equilibrium reactions, P_{ref} is 1 atm and *P* is in units of atmospheres.

Note
$$Y_A = \frac{n_A}{n_A + n_B + n_C + n_D}$$

(A) $H_2 \rightarrow 2H$

- (B) $N_2 \rightarrow 2N$
- (C) $O_2 \rightarrow 2O$
- (D) $CO_2 \rightarrow CO + \frac{1}{2}O_2$
- (E) $H_2O \rightarrow OH + \frac{1}{2}H_2$
- (F) $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$
- (G) $CO_2 + H_2 \rightarrow CO + H_2O$ \leftarrow water gas reaction

T (K)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	T (K)	_
298.15	-71.30	-159.7	-81.28	-45.05	-46.10	-15.15	-4.950	298.15	
300	-70.83	-158.7	-80.73	-44.74	-45.80	-15.07	-4.905	300	
400	-51.73	-117.4	-58.91	-32.43	-33.48	-11.14	-3.215	400	
500	-40.26	-92.63	-45.82	-25.03	-26.09	-8.784	-2.193	500	
600	-32.62	-76.12	-37.10	-20.10	-21.16	-7.210	-1.506	600	
700	-27.16	-64.33	-30.86	-16.57	-17.64	-6.086	-1.014	700	
800	-23.06	-55.48	-26.19	-13.92	-15.00	-5.243	-0.642	800	
900	-19.88	-48.60	-22.55	-11.86	-12.95	-4.587	-0.352	900	[]
1000	-17.33	-43.10	-19.64	-10.21	-11.31	-4.063	-0.120	1000	
1100	-15.18	-38.54	-17.21	-8.843	-9.922	-3.633	0.040	1100	LOG(K)
1200	-13.40	-34.75	-15.20	-7.739	-8.784	-3.275	0.152	1200	
1300	-11.89	-31.54	-13.49	-6.802	-7.821	-2.972	0.251	1300	
1400	-10.60	-28.79	-12.03	-6.004	-6.996	-2.712	0.330	1400	
1500	-9.474	-26.41	-10.76	-5.315	-6.280	-2.487	0.397	1500	
1600	-8.492	-24.32	-9.657	-4.711	-5.654	-2.290	0.456	1600	
1700	-7.626	-22.48	-8.680	-4.175	-5.102	-2.116	0.510	1700	
1800	-6.856	-20.85	-7.811	-3.697	-4.611	-1.962	0.560	1800	
1900	-6.168	-19.39	-7.033	-3.268	-4.172	-1.824	0.608	1900	
2000	-5.548	-18.07	-6.334	-2.879	-3.777	-1.699	0.652	2000	
2100	-4.987	-16.88	-5.701	-2.527	-3.419	-1.587	0.692	2100	
2200	-4.477	-15.79	-5.125	-2.207	-3.094	-1.484	0.729	2200	
2300	-4.012	-14.81	-4.600	-1.917	-2.797	-1.391	0.761	2300	
2400	-3.585	-13.90	-4.118	-1.652	-2.525	-1.306	0.788	2400	
2500	-3.192	-13.06	-3.675	-1.412	-2.274	-1.227	0.810	2500	
2600	-2.830	-12.29	-3.266	-1.194	-2.043	-1.154	0.828	2600	
2700	-2.495	-11.58	-2.887	-0.995	-1.829	-1.087	0.840	2700	
2800	-2.183	-10.92	-2.536	-0.813	-1.631	-1.025	0.849	2800	
2900	-1.893	-10.30	-2.208	-0.646	-1.446	-0.967	0.855	2900	
3000	-1.622	-9.729	-1.903	-0.491	-1.273	-0.913	0.859	3000	
3100	-1.369	-9.191	-1.617	-0.347	-1.111	-0.863	0.863	3100	
3200	-1.131	-8.686	-1.349	-0.208	-0.960	-0.815	0.869	3200	
3300	-0.908	-8.213	-1.097	-0.073	-0.818	-0.771	0.881	3300	
3400	-0.698	-7.767	-0.860	0.062	-0.684	-0.729	0.900	3400	
3500	-0.501	-7.346	-0.637	0.202	-0.558	-0.690	0.929	3500	Source: Pulkrabek

Equilibrium Constants

Log(k)

4

Chemical Equilibrium

Recall that for a rich mixture (γ <1) the reaction equation could not be balanced (5 unknowns *a*, *b*, *d*, *e*, *f* and only 4 atom balance equations for C,H,O,N) even if we neglect dissociation (i.e., low product temperature)

$$C_{\alpha}H_{\beta} + \gamma(\alpha + \frac{\beta}{4})(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + dN_2 + eCO + fH_2$$

If the product species CO_2 , H_2O , CO and H_2 are at equilibrium, an additional equation can be obtained from the water-gas reaction:

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$

The equilibrium constant for this reaction provides the fifth equation:

$$K(T) = \frac{Y_{CO} \cdot Y_{H_2O}}{Y_{CO_2} \cdot Y_{H_2}} = \frac{e \cdot b}{a \cdot f} \qquad P = 1 \text{ atm}$$

Note *K* is tabulated as a function of *T*

Chemical Equilibrium, example

1 kmol of CO₂, $\frac{1}{2}$ kmol of O₂ and $\frac{1}{2}$ kmol of N₂ reacts to form a mixture consisting of CO₂, CO, O₂, N₂ and NO at 3000K and 1 atm. Determine the equilibrium composition of the product mixture.

$$CO_2 + 1/2O_2 + 1/2N_2 \rightarrow \underbrace{aCO + bNO + cCO_2 + dO_2 + eN_2}_{3000\text{K and 1 atm}}$$

- $C \quad 1 = a + c \qquad \qquad c = 1 a$
- $O \quad 3 = a + b + 2c + 2d \qquad d = 1/2(1 + a b)$
- $N \quad 1 = b + 2e$ e = 1/2(1 b)

Have 2 unknowns *a*, *b* so need 2 equilibrium equations

1. $CO_2 \leftrightarrow CO + 1/2O_2$ $K_1(3000K) = 0.3273$

2. $1/2O_2 + 1/2N_2 \leftrightarrow NO$ $K_2(3000K) = 0.1222$

Chemical Equilibrium, example

$$CO_2 \leftrightarrow CO + 1/2O_2$$

From the equilibrium constant expression

$$K_1 = 0.3273 = \frac{Y_{CO} \cdot Y_{O_2}^{1/2}}{Y_{CO_2}}$$

 $CO_2 + 1/2O_2 + 1/2N_2 \rightarrow aCO + bNO + cCO_2 + dO_2 + eN_2$

$$n_{tot} = a + b + c + d + e = a + b + (1 - a) + 1/2(1 + a - b) + 1/2(1 - b) = (4 + a)/2$$

$$Y_{CO} = \frac{a}{(4+a)/2} \qquad Y_{O_2} = \frac{1/2(1+a-b)}{(4+a)/2} \qquad Y_{CO_2} = \frac{1-a}{(4+a)/2}$$

Substituting yields:

$$K_{1} = 0.3273 = \frac{Y_{CO} \cdot Y_{O_{2}}^{1/2}}{Y_{CO_{2}}} = \frac{a}{1-a} \left(\frac{1+a-b}{4+a}\right)^{1/2}$$
(1)

Chemical Equilibrium, example

Similarly for the second equilibrium reaction

$$K_{2} = 0.1222 = \frac{Y_{NO}}{Y_{O_{2}}^{1/2} \cdot Y_{N_{2}}^{1/2}} = \frac{2b}{\left[(1+a-b)(1-b)\right]^{1/2}}$$
(2)

Solving equations 1 and 2 yields:

$$a = 0.3745$$
 $b = 0.0675$

From the atom balance equations get:

$$c = 0.6255$$
 $d = 0.6535$ $e = 0.4663$

Substituting and dividing through by the total number of moles gives:

 $0.17CO + 0.03NO + 0.29CO_2 + 0.30O_2 + 0.21N_2$

Computer Programs Equilibrium Solvers

If the products are at high temperature (>2000K) minor species will be present due to the dissociation of the major species CO_2 , H_2O , N_2 and O_2 .

$$C_{\alpha}H_{\beta} + (\alpha + \frac{\beta}{4})(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2 + dO_2 + eCO + fH_2$$
$$+ gH + hO + iOH + jNO + kN + \cdots$$

Hand calculations are not practical when many species are involved, one uses a computer program to calculate the product equilibrium composition.

http://www.wiley.com/college/mechs/ferguson356174/wave_s.html Equilibrium Combustion Solver Applet

A popular program used for chemical equilibrium calculations is STANJAN

Equilibrium Composition for Combustion Products of Octane(C₈H₁₈)-air

Adiabatic Flame Temperature for Products at Equilibrium

$$C_{\alpha}H_{\beta} + (\alpha + \frac{\beta}{4})(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2 + dO_2 + eCO + fH_2 + gH + hO + iOH + jNO + kN + \cdots$$

One can calculate the AFT for the above stoichiometric reaction where the products are at equilibrium: $\sum_{P} n_i \overline{h_i}(T_a) = \sum_{R} n_i \overline{h_i}(T_1)$

Dissociation of the products will result in a lower AFT since dissociation reactions are endothermic.

Again computer programs are used for these calculations: http://www.wiley.com/college/mechs/ferguson356174/wave_s.html <u>Adiabatic Flame Temperature Applet</u>

and STANJAN

Chemical Kinetics

Global (or overall) reactions describe the initial and final states:

 $C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$

First and Second Laws of thermodynamics are used to predict the final equilibrium state of the products after the reaction is complete.

Chemical kinetics deals with how fast the reaction proceeds.

$$v_F F + v_A A \to v_C C + v_D D$$

How fast the fuel is consumed is of interest, the **reaction rate** ω '' is defined as:

$$\omega''' = -\frac{d[F]}{dt} \qquad [F] = \frac{n}{V} = \frac{P_i}{\Re T}$$

where [F] refers to the fuel concentration (kmol/m³ or kg/m³), negative sign due to the fact that the fuel is consumed. 12

Reaction Mechanism

In reality the reaction proceeds through elementary reactions in a chain process known as chain reactions

The global hydrogen-oxygen reaction proceeds via the following subset of elementary reactions, collectively known as a **reaction mechanism**:

 $H_2 + M \rightarrow H + H + M \rightarrow H$ Chain initiation $H + O_2 + M \rightarrow HO_2 + M$ Chain propagation $HO_2 + H_2 \rightarrow H_2O + OH$ $OH + H_2 \rightarrow H_2O + H$ $H+O_2 \rightarrow OH+O$ Chain branching $H_2 + O \rightarrow OH + H$ $H + OH + M \rightarrow H_2O + M$ Chain termination $H + H + M \rightarrow H_2 + M$ $O + O + M \rightarrow O_2 + M$

(M is any species present that acts as a collision partner)

Chain Branching

In chain initiation reactions radicals are formed

In chain propagation reactions there is no net production or destruction of free radicals

In chain branching reactions there is a net production of radicals

Chain branching reactions lead to rapid production of radicals which causes the overall reaction to proceed extremely fast \rightarrow explosively

The reaction comes to completion through chain termination reactions where the radicals recombine to form the final products.

Global Reaction Rate

Even for the simplest hydrocarbon fuels the chemistry is very complicated. The GRI HC mechanism has 49 species and 227 elementary reactions.

For engineering purposes easier to use approximate global reaction:

$$v_f(Fuel) + v_{O_2}O_2 + v_i(Inert) \rightarrow v_P(Product)$$

Empirical correlations have been developed for the fuel reaction rate:

$$\frac{d[Fuel]}{dt} = -A \exp\left(-\frac{E}{\overline{R}T}\right) \cdot [Fuel]^n [O_2]^m [Inert]^l$$

where [] in units of gmol/cm³ \overline{R} = 1.987 cal/gmolK E typically 20 - 40 kcal/gmol

Note typically l=0